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a b s t r a c t

The Lattice Boltzmann Method (LBM) was implemented to simulate the two-dimensional (2-D)
Rayleigh–Taylor instability (RTI) during the mixing of the immiscible fluids. Two important parameters
of the density and the viscosity as represented respectively by the Atwood and the Reynolds numbers
were considered. In the calculation the density of two immiscible fluids was calculated by using the
equation of state (EOS). In the present simulations, both Atwood and Reynolds numbers were varied in
order to investigate the time variations of the interfacial behavior during RTI, the position of bubbles
and spikes, and the horizontal average density. The results indicate that the Atwood number has a
higher effect than the Reynolds number in the mixing process during RTI. The bubbles and spikes
positions go farther in the displacement with the increase of both Reynolds and Atwood numbers.
Moreover, the increase of both Reynolds and Atwood numbers accelerate the mixing process during
RTI.

© 2020 ElsevierMasson SAS. All rights reserved.
1. Introduction

The Raleigh–Taylor instability (RTI) can be found in engineer-
ng applications such as boiling and heat exchanger facilities [1].
n pool boiling regime, low density vapor at the lower part props-
p the liquid phase. Due to the gravity, the liquid-phase descends
hrough the vapor phase to contact the hot surface. Consequently,
he liquid will evaporate into the lower density fluid as the
apor. Moreover, the latent heat transfer occurs during this phe-
omenon. The overall phenomena mean that more effective heat
ransfer exists during the boiling regimes. For the comprehensive
nderstanding of the latest state of the art of RTI the readers may
efer to [1] and [2].

The main issues of the RTI are: (1) the physical understanding
f the flows due to the hydrodynamic instabilities, (2) the flow
tructure during the hydrodynamic instabilities, and (3) the effect
f the initial perturbations on the flows during RTI. The induced

∗ Correspondence to: Department of Mechanical & Industrial Engineering,
aculty of Engineering, Universitas Gadjah Mada, Indonesia.

E-mail address: deendarlianto@ugm.ac.id (Deendarlianto).
ttps://doi.org/10.1016/j.euromechflu.2020.10.006
997-7546/© 2020 Elsevier Masson SAS. All rights reserved.
flows due to the RTI can be explained in the stages from linear,
nonlinear, and transitions to turbulence flows. The linear stage
occurs when the position and the velocity are related linearly.
The nonlinear stage occurs if both the position and the velocity
have a non-linearly relationship. Beyond the linear and the non-
linear stages, a transition to turbulence can be found, whereas
the problem deals with the uncertainty of the hydrodynamic
behavior [3].

The experimental investigations of RTI during the film boiling
were investigated by Seo and Bang (2015) [4]. During the film
boiling, the film vapor, which has a lower density at lower po-
sition, supports the higher density (liquid). The RTI phenomenon
exists when the film vapor penetrates into the liquid, in which at
the same time the liquid descends and contacts the hot surface.
Immediately after the liquid contacts the hot surface, the liquid
turns into the vapor. From the heat transfer point of view, it pro-
duces a high heat transfer process due to both latent and sensible
temperature drop. In their experiment, the effects of the surface
diameter of the heater cylinder and the system pressure on RTI
were examined. The investigated parameter was the distance
between the perturbations that was defined as the wavelength

https://doi.org/10.1016/j.euromechflu.2020.10.006
http://www.elsevier.com/locate/ejmflu
http://www.elsevier.com/locate/ejmflu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euromechflu.2020.10.006&domain=pdf
mailto:deendarlianto@ugm.ac.id
https://doi.org/10.1016/j.euromechflu.2020.10.006
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that supported the RTI system. The results suggested that the
RTI was affected by the wavelength of the corresponding surface
coating [4].

The study of RTI on the basis of Navier–Stokes in a complex
ystem by using the finite element numerical method can be
ound in [5–8]. The Navier–Stokes simulation by using the finite-
ifferent method can be also found in [9–15]. A numerical study
f RTI by using the combination of the Navier–Stokes equations
ith the phase field and the diffuse approximate method was
arried-out by Talat et al. [16]. They used the meshless solution
rocedure as a tool to handle the moving boundary problems in
he single domain fixed node. In their work, the Atwood numbers
anged from 0.1 to 0.5. Here Atwood number is defined as the
atio between the density difference of the two-fluid system and
he mixture density of the two-fluid system. Their result indicated
hat the effects of Atwood number were mentioned qualitatively,
hereas the higher the density ratio of the system, the faster the
enetration of spikes and bubbles.
The measurements in the mixing research have become a

trong attention for the study of the RTI and Richtmyer–Meshkov
nstability (RMI). Two conventional parameters of mixing mea-
urement are the ratio of the mixing length to entrainment length
nd reaction rate of two fluids component. Moreover, the param-
ter of direct mixing measurement was also proposed by Zhou
t al. (2016) [17] in the form of the normalized mixed mass.
he advantages of this normalized form are more sensitive for
he change of Atwood number and more consistent for both RTI
nd RMI. Its sensitive was well-posed by Zhou et al. especially
nder Atwood number of 0.8. That is the increase of Atwood
umber will decrease the mixing mass at late time for both RTI
nd RMI [17].
As an alternative method to the conventional Navier–Stokes

ased computational fluid dynamics (CFD) method, the Lattice
oltzmann Method (LBM) becomes a promising tool for the math-
matics modeling and simulation. The LBM is built from the
esoscopic kinetic molecular interactions. It is derived from a
ore fundamental paradigm rather than the conventional con-

inuum approach. Here, it is not necessarily to solve the Poisson
quation (which is computationally expensive), but the pressure
an be calculated through the equations of state (EOS). Moreover,
BM is easy to parallelize due to the locality in computation.
inally, the no-slip boundary condition can be handled easily by
sing a bounce-back scheme [18,19].
The numerical simulations on the effects of the viscosity and

he density ratio during the RTI by using LBM were also in-
estigated in the past [20,21]. He et al. (1999) [22] studied the
hree-dimensional (3-D) structure evolution of the interface by
sing LBM. Under the condition of the Atwood number of 0.5
nd Reynolds number of 1024, the spikes, bubbles and saddle
ositions were shown. The investigation used the mixed density
o quantify of the complex structure during the RTI development
22]. A mixed density of the high and low densities of fluids
as studied by the averaging of both densities under the RTI of
he density mushy region generation. The mathematical modeling
as studied under the assumption of low Atwood number, and
nder the certain values both of gravity and viscosity. It was
hown that there was a similarity between the mushy region that
ppears after the averaging and the perturbed unstable jump [23].
n the case of two-dimensional (2-D), He et al. (1999) [24] also
tudied the effect of Reynolds number under a constant Atwood
umber. The results showed that the viscosity has a little effect
n the growth of bubble and spike, but has a significant effect on
he development of Kelvin–Helmholtz instability [24].

From the previous studies, it is noticed that the physical prop-
rties such as viscosity and density have a strong effect on the

TI. Many studies also explained also the relationship between

277
the physical properties and the development of RTI (e.g. [1–
3,17,22,25–30]). Here it is considered that the Atwood number
is the important parameter in regards with anisotropy [25]. In
general, the ratio of traveled-distance of spike to bubble is always
greater than unity. It means that the spike always traveled farther
than bubble all the time. There is an anomaly behavior was
reported by Zhou & Cabot (2019) [25] for At = 0.8 whereas at
late time after the ratio equal to 1.45 for quite long time then
was plunged to 1.3. The thresholds of large Atwood number
that has the anomaly behavior is indicated at Atwood number
greater than 0.75. This behavior encourages lot of opportunities
for the investigations of the numerical simulations in this topic.
However, a detailed physical mechanism during RTI due to the
variations of the density and the viscosity are rare in open lit-
erature. Geun & Kim, (2013) [29] performed a numerical study
on the interfacial behavior during RTI by varying Reynolds and
Atwood numbers. Meanwhile, their conclusion only described
that the Atwood number is more influential than the Reynolds
number without any quantitative explanations. Therefore, further
investigations on the effects of Atwood and Reynolds number on
RTI should be carried out more quantitatively by considering the
growth of the instability.

The objective of the present work is to investigate the in-
fluences of the physical properties in the term of the Atwood
number and Reynolds number during RTI in 2-D, numerically.
The critical discussions of 2-D in regards with inertial confine-
ment fusion (ICF) and supernovae [31] will discuss as the future
challenge of 3-D simulation at the last part of the discussion of
the present manuscript. The characteristics of hydrodynamic flow
are presented in the form of three plots. Those are the interfacial
shape, the positions of bubbles-spikes, and the average density
process. Those results then are used to analyze the role of both
the Atwood and Reynolds numbers during the RTI.

The present manuscript is organized as follows. First, nu-
merical modeling of LBM is explained. Next, the validations of
the numerical result will be presented. The first validation is a
comparison between the obtained results from the present study
with those of the other numerical schemes. The second validation
is a comparison to the experimental results from the previous
investigations. Finally, the dependency of Atwood and Reynolds
number during RTI will be analyzed.

2. Governing equations and numerical modeling

Two distributions functions are used in the present LBM sim-
ulation as also conducted by He et al. (1999) [24]. Those are
the distribution function to represent the hydrodynamics fluid
flow, and the index function for the interface tracking by using
different density distribution. The distribution functions satisfy:

gi(x + ei∆t, t +∆t)

= gi(x, t) −
1
τ1

(gi(x, t) − gieq(x, t)) + Si(x, t)∆t (1)

i(x + ei∆t, t +∆t)

= fi(x, t) −
1
τ2

(fi(x, t) − fieq(x, t)) + Si′(x, t)∆t (2)

where fi(x, t) is the density distribution function in the ith veloc-
ity direction at position x and time step t. The relaxation time,
τ1, relates to the kinematic viscosity of υ = cs2(τ1 – 0.5)∆t. The
relaxation time τ2 relates to the mobility in the Cahn–Hilliard
equation. Si(x, t)∆t and Si′(x, t)∆t are the source terms. The
equilibrium distributions gieq (x, t) and fieq(x, t) are expressed as
follows:

gieq(x, t) = wi

⌊
p + c2s ρ(

ei∝ u∝

2 +
ei∝ u∝

eiβ uβ
4 −

u∝u∝

2 )
⌋

(3)

cs 2cs 2cs
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ψ

w

w

fieq(x, t) = wiφ

⌊
1 + c2s ρ(

ei∝ u∝

c2s
+

ei∝ u∝
eiβ uβ

2c4s
−

u∝u∝

2c2s
)
⌋

(4)

where p is the hydrodynamic pressure, ρ is the density and φ is
the function of the index.

The macroscopic variables are given by He et al. (1999) [24],
as follows.

φ =

∑
fi (5)

p =

∑
gi +

∆t
2

uβ (−
∂ψ(ρ)
∂β

) (6)

where ψ is a function of ρ and φ, whereas:

(ρ) = p − c2s ρ (7)

ψ(φ) = pth − c2s φ (8)

here pth is the thermodynamic pressure. It can be calculated from
the Carnahan–Starling EOS, and defined as follows:

p = ρRT
1 +

bρ
4 +

( bρ
4

)2
−

( bρ
4

)3(
1 −

bρ
4

)3 − aρ2 (9)

The challenge during the implementation of Eq. (9) is to
find the two-phase equilibrium system under the assumption
of a constant temperature. It requires a Maxwell construction
as shown in Fig. 1. It specifies the equilibrium states under the
assumption of the temperature is achieved if the area of A1
is equal to the area of A2. Here the Maxwell construction is
also known as ‘‘the equal-area rule’’. The next task is to find
the pressure point, whereas the A1 is equal to the A2. Here an
iterative approach is required. Furthermore, a simple procedure
can be explained as follows. Specify the system temperature
at a sub-critical or below the critical temperature firstly. Here
it is postulated that the lower the specified temperature, the
wider the coexistence of both low and high-density fluids. At the
specified temperature, the Carnahan–Starling EOS is plotted.

The shape of the plot has three intersections points with the
horizontal line of the equilibrium pressure line as shown clearly
in Fig. 1. A careful estimation of the pressure line should be made,
because a wrong estimation cannot estimate the crossing three
points Vm1, Vm2, and Vm3. The Vm1 and Vm2 are the integral
borders to calculate the area A1 numerically, and Vm2 and Vm3
are used to calculate area A2. If A1 is greater than A2, the pressure
line shifts down and the new three points Vm1, Vm2 and Vm3 can
be found. If A1 is lower than A2, the pressure line shifts up and
the Vm1, Vm2 and Vm3 can be calculated. With the new three
points, the above integral calculation runs until the conditions of
A1 = A2 is accepted in a certain numerical criterion.

2.1. Numerical modeling

In the present work, the calculation model for the test case is
shown in Fig. 2. As shown in the figure, the aspect ratio of the
domain is 1:4. The initial condition of the perturbation is defined
as y = 0.5H + 0.1cos(n). Here H is the height of domain, n is the
wave-number, and x is the horizontal lattice.

In the present model, the bounce-back boundary conditions
are applied at both the top and bottom, while the periodic bound-
ary conditions are applied at both the left and right sides. Here, it
is assumed that there is no fluid flow in both x and y-directions. In
the calculations, two dimensionless parameters were used. Those
are Atwood and Reynolds numbers, posed also in lattice unit (lu)
for length, mass unit (mu) for mass and time step (ts) for time.
The Reynolds number is defined as:

Re =
L√

L · g (10)

v

278
Fig. 1. Maxwell construction for the Carnahan–Starling EOS.

Fig. 2. Schematic diagram of the numerical model.

here L is the size of bottom length, g is the gravity acceleration
and v is the dynamic viscosity. The Atwood number is defined as:

At =
ρ1 − ρ2

ρ1 + ρ2
(11)

here ρ1 is the heavy fluid density and ρ2 is the light fluid
density. The time-domain (T) is normalized by the characteristic
time of

√
L
g .

2.2. Numerical solution

The basic property LBM is the discrete-velocity distribution
function of f (x, t), whereas the physical interpretation is the
i
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Fig. 3. Schematic diagram of D2Q9.

able 1
alues of wi and ci for D2Q9 scheme.
fi 0 1 2 3 4 5 6 7 8

wi
4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

cix 0 1 −1 0 0 1 −1 −1 1
ciy 0 0 0 1 −1 1 1 −1 −1

particle population. The particle population has a specific ve-
locity c i at position x and at time t . The mass density and the
momentum are calculated through the weighted sums of ρ(x, t)
=

∑
i fi(x, t) and ρu(x, t) =

∑
i c ifi(x, t), respectively. The move-

ment of the particles in LBM must be defined at the beginning as
DmQn scheme. The value of m equal to 2 means two-dimensional
(2-D) simulation and m equal to 3 means three-dimensional (3-D)
simulation. The value of n shows the probabilities of the particle
velocity path after the collisions. Typical popular schemes are
D2Q9 for 2-D and D3Q19 for 3-D simulation. In D2Q9 means
that the simulation is carried-out in 2D and 9 velocity path after
each collision. Meanwhile, D3Q19 means that the simulation is
carried-out in 3-D and has 19 velocity paths after the collision.

The solution in LBM is comprised in two steps. Those are
the collisions and the streaming. The discretized equation of the
collision part is defined as:

fi∗ (x, t) = fi (x, t)−
∆t
τ

(fi (x, t)− fieq (x, t)) (12)

Moreover, the discretized equation of the streaming part is
defined as:

fi (x + ci∆t, t +∆t) = fi∗ (x, t) (13)

The collected-particles movement in LBM follows a certain
scheme. In the present work, the D2Q9 scheme was used, in
which there are two-dimensional space and nine possibilities of
the movements after the collision, as shown clearly in Fig. 3. The
scheme of D2Q9 has the probability factor in each direction (wi)
known as the weight factor and speed direction of ci. The values of
wi and ci in the D2Q9 scheme are shown in Table 1.

Furthermore, the discrete equations of fi and gi are given as
follows:

fi (x + eiδt , t + δt)− fi (x, t)

= −
δt (fi (x, t)− fieq (x, t))

τf
−

2τf − 1
2τf

(ei − u) .∇ψ (φ)
RT

Γi(u)δt

(14)

i (x + eiδt , t + δt)− gi (x, t)

= −
δt (gi (x, t)− gieq (x, t))

τg
−

2τg − 1
2τg

× (ei − u) . [Γi (u) . (Fs + G)− (Γi (u)− Γi (0))∇ψ (ρ)] δt
(15)
279
whereas,

Γi (u) = wi[1 +
ei.u
RT

+
(ei.u)2

2 (RT )2
−

u2

2RT
] (16)

fieq = wiφ[1 +
ei.u
RT

+
(ei.u)2

2 (RT )2
−

u2

2RT
] (17)

i
eq

= wi[p + ρRT (
ei.u
RT

+
(ei.u)2

2 (RT )2
−

u2

2RT
)] (18)

The values of τf and τg are the relaxation times relating to
the kinematic viscosity and the mobility, respectively. The index
function (φ), the pressure (p), the macroscopic velocity (u), the
density (ρ), the kinematic viscosity (v), and the force on the
surface (Fs) are defined respectively as follows:

φ =

∑
fi (19)

=

∑
gi −

u
2
.∇(p − ρRT )δt (20)

ρRTu =

∑
eigi +

RT
2
(Fs + G) δt (21)

ρ (φ) = ρl +
φ − φl

φh − φl
(ρh − ρl) (22)

v (φ) = vl +
φ − φl

φh − φl
(vh − vl) (23)

Fs = κρ∇∇
2ρ (24)

The ψ is the variable function to represent the intermolecular
interaction in the multiphase system. It has a relationship with
the non-ideal EOS of a density function (ρ) and index function
(φ), and is defined as follow.

ψ (ρ) = p − cs2ρ (25)

ψ (φ) = pth − cs2φ (26)

The Cahn–Hilliard-like equations for the interface tracking
were derived as follows (Huang, 2015) [18]. The Taylor expansion
of Eq. (2) and applying the Chapman–Enskog expansion to ∂t =

∂t1 + ε ∂t2 and fi = f (0)i + ε f (1)i + ε2 f (2)i , where ε = ∆t, we will
get as follows

ε(∂t1 + ε ∂t2 + eiα ∂α)[f
(0)
i + ε f (1)i + ε2 f (2)i ]

+ 0.5ε2(∂t1 + ε∂t2 + eiα ∂α)2[f
(0)
i + ε f (1)i ]

= −
1
τ1

[f (0)i + ε f (1)i + ε2 f (2)i − f (eq)i ] + Si∆t (27)

Maintaining the terms to O(ε2) of above equation yields,

O(ε0) :
1
τ1

[f (0)i − f (eq)i ] = 0, (28)

(ε1) : (∂t1 + eiα∂α)f
(0)
i +

1
τ1

f (1)i − Si = 0, (29)

O(ε2) : ∂t2f
(0)
i + (1 −

1
2τ1

)(∂t1 + eiα∂α)f
(1)
i

+ 0.5(∂t1 + eiα∂α)Si +
1
τ1

f (2)i = 0 (30)

From Eqs. (5) and (28) we get
∑

fi(0) = φ and
∑

fi(n) = 0, for n
≥ 1. Summing both sides of Eq. (29) over i yields

∂ φ+∂ (φu ) = 0 (31)
t1 α α
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Fig. 4. The comparison between the observed bubbles and spikes positions obtained from the present work and He et al. (1999) [24].
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umming Eq. (30) over i yields

t2φ + (1 −
1
2τ1

)∂α[
∑

eiα fi(1)] + 0.5 ∂α[
∑

eiαSi′] = 0 (32)

he term of
∑

eiα fi(1)in simulation were omitted and substitute
he

∑
eiα Si′ = (1 −

1
2τ1

)Fα ′ into Eq. (32), we get

∂t2φ + 0.5(1 −
1
2τ1

)∂α Fα ′
= 0 (33)

eplacing Fα ′
= −∂α(p − cs2φ) into the Eq. (33) will result

t2φ − 0.5(1 −
1
2τ1

)∂α[∂α(p − cs2φ)] = 0 (34)

ombination of Eqs. (31) and (34) results

t1φ+∂α(φuα) = 0.5(1 −
1
2τ1

)∂α[∂α(p − cs2φ)] (35)

he Eq. (35) is the macroscopic interface-tracking equation. It is
nown also the Cahn–Hilliard-like equation.

. Validations

The first validation was carried out by the comparison of the
btained results from the present work with that of He, et al.
1999) [24] as shown in Fig. 4. The flow condition was At =

.5 and Re = 256 and 2048 [24]. The figure shows that the
ubbles and spikes positions obtained from present work are
dentical to that of He, et al. Next, the spike positions have a
mall discrepancy, and those are 5.7% (in the case Re = 2048)
nd 12.6% (in the case Re = 256). The spike distance under the
ame Atwood number of 0.5 means the same gravity force. Next,
he difference of spike-traveled gap between the Re = 256 (12%
pike gap) and Re = 2048 (5.7% spike gap) is from the effect of the
iscosity. Under the condition of Re = 256 it is considered that
t has a higher viscosity than that of Re = 2048. This means that
he increase of viscosity will increase the friction force. Moreover,
hese facts indicate that the obtained results from the present
umerical simulation are in a good agreement with those of He
t al.
The next validations were conducted by using the comparison

f the results from the present works with those of Lee, et al.
ing, et al. Guermond et al. and Tryggvason. Here Lee et al. [32]
280
onducted the numerical simulation by using the Navier–Stokes
ahn–Hilliard based with a finite difference method. Ding et al.
33] obtained the simulation result using the Navier–Stokes with
phase-field method. Guermond et al. [34] carried-out the simu-

ation by using the Navier–Stokes finite element method, mean-
hile Triggvasson used the Navier–Stokes based with a vortex in
he cell in his work [35]. The results are shown in Fig. 5. Close
bservation of Fig. 5 indicates that the current work conforms
ell with the above previous works. The bubbles and spikes
ositions deviate around only 2% and 7%. Those agreements show
he capability of the current numerical scheme in comparison
ith the other methods to simulate the RTI.
The validation was also performed also by the comparison

f present numerical work with the experimental results from
addell et al. (2001) [26]. In their experiment, the salt solution

nd surfactant-additive-heptane were used as the tested fluids.
he Atwood numbers were 0.155 and 0.336 [26]. The result is
hown in Fig. 6. The figure indicates that both experimental and
imulation results are also in a good agreement. The figure depicts
hat the amplitude due to gravity and buoyancy forces increases
ith the time after sled release. Here the gravity pulls the high
ensity fluid to descend; meanwhile the buoyancy force pushes
he low density fluid to fill the area that was leaved by the high
ensity fluid. Next, the linear growth happens in the range of time
elow 0.1 s or until the amplitude of 4 mm as shown clearly in
ig. 6.
The non-linear growth area when the time after sled greater

han 0.1 s is also shown in Fig. 6. The non-linear growth area
hows that the amplitude of both experimental and numeri-
al always less than the amplitude of theoretical results. This
ifference due to the complicated interfacial structure on the
xperimental that makes the prevailed-force becomes more com-
lex. Meanwhile, the theoretical model only counts the ideal
athematical conditions.

. Results and discussions

In the LBM simulation, the values of high and low densities
ust be set as the calculation inputs. The combinations of both
ensities are represented by Atwood number. In the present sim-
lation, under a constant Reynolds number of 1024, the Atwood
umbers ranged from 0.1–0.5. Next, the Reynolds numbers were
aried at 256, 512, 1024 and 2048, whereas the Atwood number
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Fig. 5. The comparison of present work with those of Lee, et al. H Ding, et al. Guermond et al. and Tryggvason [32–35].
Fig. 6. The comparison between the present numerical result with the experimental result from Waddell (2001) [26].
was kept constant at 0.5. The calculation results of both densities
are shown in Table 2.

Table 2 shows the obtained characteristics of Maxwell con-
struction by using Carnahan–Starling EOS. The table reveals that
the decrease of the critical temperature will increase and de-
crease the high mole volume (Vm3) and low mole volume (Vm1)
respectively. Consequently, it increases both the ratio density and
Atwood number.

Fig. 7 shows the time progress of the development stage of the
interfacial behavior obtained from the present work. The figures
show that the interfacial behavior during RTI can be described
into four-shape stages. Those are (1) Perturbation continuation,
(2) head-and-neck shape, (3) Kelvin–Helmholtz Instability (KHI)
or mushroom shape, and (4) turbulence flow. The perturbation
continuation stage (Fig. 7(a)) occurs when the interface has a
sinusoidal-like-shape and will end when the spike is in the form
of the head-and-neck development (Fig. 7(b)). The head–neck
stage is started when the spike-width is bigger than the stem. The
KHI begins when the spike-edge at the right and left sides form
281
the rolls-up. As time goes by, the rolls-up of the both-side form a
mushroom-shaped (Fig. 7(c)). The turbulence stage is begun when
both the right and left sides of the spikes are pulled up in the
bubble ascending direction (Fig. 7(d)).

RTI occurs only when the spikes accelerate in the direction
of lighter density. Here, the bubble and spike movements have
different mechanism. The spikes descend because of the gravity
force. Otherwise, the bubbles ascend only as the impulsive reason
to fill the room that was left by higher density fluid. The initial
condition of a sinusoidal expedites the movement both of bubble
and spike. The lower part of the interface as the onset of spike has
less supported-pressure than that is required to stand still. The
condition makes the spike initiates to go-down. The highest por-
tion of the bubble has a higher pressure than the other portion.
The bubble begins to ascend and push aside the higher density
fluid. In the next section, the movement process of the bubble
and spike will be discussed.
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Table 2
The calculation result of Maxwell construction of Carnahan–Starling EOS.
The factor of critical
temperature (T/T C )

Equilibrium
pressure

High mole
volume (V3)

Low mole
volume (V1)

High density
(ρh = 1/V 1)

Low density (ρl
= 1/V 3)

Atwood number

9.99E−1 4.38E−3 8.50 6.96 1.44E−1 11.76E−2 0.1
9.94E−1 4.28E−3 9.51 6.34 1.58E−1 10.52E−2 0.2
9.85E−1 4.09E−3 10.76 5.79 1.73E−1 9.30E−2 0.3
9.72E−1 3.83E−3 12.34 5.28 1.89E−1 8.11E−2 0.4
9.54E−1 3.50E−3 14.52 4.84 2.07E−1 6.89E−2 0.5
Fig. 7. RTI interface shape stages.
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able 3
he summary of the interfacial stage under various Reynolds numbers.
Time step Reynolds number

256 512 1024 2048

1 P P P P
2 P H H H
3 H K K K
4 T T T T
5 T T T T

Note: P = perturbation, H = Head-and-neck, K = Kelvin–Helmholtz instability,
= Turbulence.

Fig. 8 shows the effect of the Reynolds number on the time
ariation of the interfacial behavior during RTI, whereas the sum-
ary of the interfacial stages is tabulated in Table 3. From Fig. 8(a)
nd Table 3, it is noticed that at T = 1 under all Reynolds num-
ers, it poses a perturbation stage. Here at T = 1 is marked as the
arly stage when the heavy fluid starts to descend and the light
luid begins to ascend. The similarity of the interface shape at
his early stage means that the liquid viscosity has no significant
ffect on the initiation of the RTI. From Fig. 8(b) and Table 3, at
= 2 the effect of Reynolds number on the interfacial from a

perturbation stage to the head–neck stage can be shown. Close
investigation of Fig. 8(a) and (b) reveals that at T = 1 and T = 2,
he interface is insensitive to the change of the Reynolds number.
he insensitiveness is shown by the overlapped-interfacial under
he change of the Reynolds numbers. Meanwhile, the Reynolds
umber plays an important role at T = 3 – 5 as shown in Fig. 8(c)
(e). Here it is noticed that the higher Reynolds number, the
ore developed the RTI stages.
The physical description of the obtained results can be ex-

lained that the interfacial movement occurs due to the interac-
ion of the gravity and the friction forces. The gravity force pulls
own the heavier fluid and, consequently, pushes up the lighter
luid. Both the internal and interfacial frictions forces dampen
he movement. The internal-friction-damping force is resulted
rom the both working fluid viscosities. Meanwhile, the interfacial
riction is caused by the immiscible behavior of both working
282
Table 4
The summary of the interfacial stages under various Atwood numbers.
Time step Atwood number

0.1 0.2 0.3 0.4 0.5

1 P P P P P
2 P P H K K
3 P H K K K
4 P H T T T
5 H K T T T

Note: P = perturbation, H = Head-and-neck, K = Kelvin–Helmholtz instability,
= Turbulence.

luids. The increase of the Reynolds number means the decrease
f the viscosities effect, therefore the internal friction forces play
less important role than the gravity force.
Fig. 9 shows the effect of Atwood number on the time variation

f the interfacial behavior during RTI. Moreover, the summary of
he interfacial stages is shown in Table 4. The main difference
etween Figs. 8 and 9 is that the interfacial behavior is more
ensitive under the change of the Atwood number. The sensitivity
ecomes stronger as the time progress. The strong sensitivity
an be seen from the separated-interfacial under various Atwood
umbers since T = 1. The physical explanations of Atwood num-
er effects on the interfacial behavior during RTI can be described
s follows. The higher the Atwood number, the higher the differ-
nce of densities between both involved-fluids, consequently the
igher the influence of gravity-force and the more velocity mixing
uring RTI.
The complicated structure of interface shape during RTI needs

ore quantitative explanations. Here, the average density profile
s used to quantify the characteristics of the horizontal mixing
ayer as conducted also by [22,24]. The quantity of the horizontal
attice or the average density layer shows the mixture behavior at
he specific time steps. Here, the average density (ρave) is calcu-
ated by averaging the density along the horizontal cross-section,
nd defined as follows

ave =

∑n
i ρi (36)

n
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Fig. 8. The effect of Reynolds number on the time variation of interfacial behavior during RTI.
0
K
n

t
F
t
T
t
A
i
i
K
F
s

o
a
p
t
o
t
p
m
s

o

where,
∑n

i ρi is the total density along the horizontal cross-
section and n is the total number of the horizontal lattice. In the
present numerical work, the effects of both Reynolds and Atwood
numbers on the average density are considered. Fig. 10 presents
the comparison of average density plots at T = 1. In the figure, (a)
and (b) correspond to the effect of Reynolds number and Atwood
number, respectively. Close observation of Fig. 10(a) reveals that
under the change of the Reynolds number, the shape of average
density poses a similar shape. The similarity of average density is
in accordance with the similarity of the corresponding interfacial
plot as shown in the lower part of Fig. 10. The average density
means the mixture situation in horizontal physically. Hence, this
similarity is supported with the similarity in interfacial shape.
In addition, the zoomed plot in the box of Fig. 10(a) relates
to the RTI development and represents the interfacial position
of the bubbles. The figure also depicts that the increase of the
Reynolds number will shift the bubbles into the faster-ascending
movement.

Fig. 10(a) also shows that the spikes interfacial average den-
sities do not significantly change with the Reynolds number. It
marked as overlapped average density plot in the figure. This
fact means that at the early stage, the effect of the Reynolds
number on the bubbles movement is more dominant than that
of the spikes. Moreover, the effect of Atwood number on the
interfacial shape at T = 1 is shown in Fig. 10(b). The main
difference between Fig. 10(a) and (b) is the occurrence of non-
overlap of the average density profile due to the change of the
Atwood number. This means that the Atwood number affects the
interfacial behavior since the beginning of RTI.

The rigorous-asymptotic analysis was investigated and com-
pared to the heuristic model for this perturbation staged by
Danilov [23]. The results of the fingering structure and mushy
region for the density averaging are very similar to the present
perturbation stage obtained from the present work (Fig. 10).
Briefly, Danilov proposed as follows. The stratified interface fluids
function addressed as Γt = y = ϕ(x/ε, x, t) in dimensionless
variables. The function ϕ(ξ, x, t) is periodic in ξ , so ϕ(ξ +1, x, t)
= ϕ(ξ, x, t) and this is fingering structure function. The averag-
ing equation through the asymptotic solution was found ∂ρ

∂t +

∇, ¯̄u ρ] + F (ρ) = 0. While, the averaging through heuristic model
283
was found ∂ρ

∂t + [v, ∇ρ ] +
∂F (ρ)
∂y = 0. This result encourages the

next analytic model in order to investigate the subsequent stage
such as head–neck, KHI and turbulence.

Fig. 11 presents the effect of both Reynolds and Atwood num-
bers on the average density at T = 2. The figures show that the
Atwood number poses a more dispersed-plot than that of the
Reynolds number. Close observation of the effect of the Reynolds
numbers effect as shown in Fig. 11(a) reveals that under the
investigated range of Re = 256 until 2048, they pose only the
perturbation stage and the head–neck stage. This means that
by eight times multiplication of the Reynolds number makes
differences in RTI mixing stages from perturbation to head–neck.
On the other hand, the effect of the Atwood numbers as shown
in Fig. 11(b), reveals that under the investigated range of At =

.1 until 0.5, they pose three-stages: perturbation, head–neck and
HI. This means that by five-times multiplication of the Atwood
umbers produces more advances in the RTI process.
The effects of both Reynolds and the Atwood numbers on

he average density at T = 3 are presented in Fig. 12, in which
ig. 12(a) shows the general shape of the peak and valley of
he average density due to the change of the Reynolds numbers.
he corresponding interfacial shape on the lower part also shows
he head–neck and KHI stages. On the other hand, the effect of
twood number on the corresponding average density is depicted
n Fig. 12(b). The main difference between Fig. 12(a) and (b)
s the occurrence of the small peak on the valley during the
HI when the Atwood number is changed. The small peak in
ig. 12(b) corresponds to the tip of the tail on the interfacial
hape; meanwhile it is not existed in Fig. 12(a).
Fig. 13 shows the effect of both Reynolds and Atwood number

n the average density at T = 4. The observed phenomena are
s follows. In Fig. 13(a) the small peaks on the average density
lots are detected. The small tips correspond to the small tip of
he tails of KHI on both sides. On the other hand, the appearance
f the small peak under the variation of the Atwood number at
he previous stage (T = 3) has been continuing into an advance
rocess. It is marked with a stretching area between both the
ain and the small peaks as shown in Fig. 13(b). Here, the
tretched-area corresponds to the turbulence flow stage.
Furthermore, the effects of both Reynolds and Atwood number

n the average density at T = 5 are shown in Fig. 14. Closed
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Fig. 9. The effect of the Atwood number on the time variation of the interfacial behavior during RTI.
Fig. 10. The effect of (a) the Reynolds number and (b) the Atwood number on the average density at T = 1.
Fig. 11. The effect of (a) the Reynolds number and (b) the Atwood number on the average density at T = 2.
bservation of the Figures indicates that under the variation of
eynolds number, the stretched area between both the main
nd small peaks is found as shown in Fig. 14(a). The stretched
284
area corresponds to the turbulence stage. On the other hand, the
increase of the Atwood numbers to T = 5 produces a higher os-
cillation of average density, as shown in Fig. 14(b). The stretched
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a

Fig. 12. The effect of (a) the Reynolds number and (b) the Atwood number on the average density at T = 3.
Fig. 13. The effect of (a) Reynolds number and (b) Atwood number on the average density at T = 4.
rea at the previous step (T = 4) turns into a random wave at T
= 5. The other obtained characteristics of average density profile
are the appearances of the valley due to the bubbles trapped and
the peaks due to the tails detachment as shown in Fig. 14(b).
In addition, the comparison of the effects between Atwood and
Reynolds numbers indicates that the Atwood number is more
dominant than the Reynolds number. The physical explanation
of the obtained phenomenon is that the gravity force dominates
over the viscosity friction. This fact can be seen that in RTI
flows, the gravity force takes part as the primary mover and the
viscosity friction force is the reaction to the primary force.

In the next section, a quantitative analysis of two-fluid in-
terface during the RTI process in vertical orientation will be
discussed in the form of the positions of the bubble and the
spike. The effects of Reynolds number on the positions of both
the bubbles and spikes are shown in Fig. 15. Here, the difference
of the traveled-distance of bubbles and spikes under the flow
condition of Re = 256 and Re = 2048 were compared at each
time step. For the comparison purposes, the difference of traveled
distance (gap) is presented in the form of percentage gap. The
percentage gap was determined by the ratio between the gap of
the bubbles (spikes) under Re = 256 and 2048 divided by the
traveled distance of bubbles (spikes) under Re = 2048. The results
are tabulated in Table 5. In the table, two important points should
285
Table 5
The ratio of traveled-distance of bubbles and spikes distance under Re = 256
and 2048.
Bubble or spike Time-step

T = 1 T = 2 T = 3 T = 4 T = 5

Bubble 1.13% 1.91% 1.97% 2.1% 3.92%.
Spike 0.5% 1.45% 4.16% 8.3% 20.8%

be highlighted as follows. The traveled-gaps of the bubbles at
the initial steps (at T = 1 and T = 2) are greater than that of
the spikes. Next, the growth of the traveled-gap of the spikes
is faster than that of the bubbles as shown at T = 3 to T = 5.
This means that the increase of the Reynolds number is resulted
from the decrease of the viscosity. The decrease of the viscosity
will decrease of dampening force, consequently it makes a faster
mixing process.

The effect of the Atwood number on the positions of both
bubbles and spikes is presented in Fig. 16. In comparison between
Figs. 16 and 15, it is clearly noticed that the effect of Atwood
number is more dominant than of the Reynolds number. Here we
can see that the width of the positions of both the bubbles and
spikes under the variation of the Atwood number are wider than
that of the Reynolds number. Here, the position of both the bub-
bles and the spikes were determined by using the same methods
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Fig. 14. The effect of (a) Reynolds number and (b) Atwood number on the average density at T = 5.

Fig. 15. The effect of the Reynolds number on the position of the bubbles and the spikes.

Fig. 16. The effect of the Atwood number on the position of the bubbles and the spikes.

286
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Table 6
The ratio of traveled-distance of bubbles and spikes between At=0.1 and
t=0.5.
Bubble or spike Time-step

T = 1 T = 2 T = 3 T = 4 T = 5

Bubble 3.87% 10.92% 16.51% 21.35% 25.78%
Spike 6.58% 23.07% 40.86% 62.04% 95.47%.

as Fig. 15. Here, the percentage of the gap was determined by
measure the ratio between the gap of the bubbles or the spikes
under the flow condition of At = 0.1 and At = 0.5 divided by
he traveled distance of the bubbles or the spikes under the flow
ondition of At = 0.5. The results are tabulated in Table 6. In
omparison between Tables 6 and 5, it is noticed that in Table 6
he gap ratio of spikes from T = 1 to T = 5 are greater than that
f the bubbles. Next, the gap ratio of bubbles and spikes under
he change of Atwood number is greater than that of bubbles
nd spikes under the change of Reynolds number. These facts
upport the indication that the influence of Atwood number is
ore dominant than that of the Reynolds number.
In the present work, the simulation of two-dimensional (2-D)

TI during the mixing of the immiscible fluids was performed.
hou et al. (2019) [31] reported that 2-D simulation does not able
o capture the important behavior in physics and engineering ap-
lications (e.g. inertial confinement fusion (ICF) and supernovae).
ere, the turbulence effects in supernovae theory require three-
imensional (3-D) simulation model, whereas they noticed that
he drawback of 2-D model in explosion of supernovae tends
o exaggerate the axial sloshing. Then the possible misleading
o the standing accretion shock instability (SASI) as the aiding
actor is appeared. While, the 2-D simulation for ICF construct
he axisymmetric flows and has the consequences yields factor
f two or more than in experiment or 3D simulation. The perfect
omentum balance in 2D simulation maximize the conversion of
hell kinetic energy to hotspot internal energy, and hence max-
mize the compression and heating of the hotspot material, and
inally enhance the fusion reactivity. Theoretically, the possibility
o extend the 2-D into 3-D configurations is a straight forward
n the present LBM method, but need much more computational
esources.

In the present LBM, the choice of 2-D and 3-D must be de-
lared from the beginning path probability of particle direction.
he scheme of D2Q9 means after once collision in 2D simulation,
ny particles have 9 probabilities of movement direction. Other-
ise, the scheme of typical D3Q19 means that all the particles in
-D simulation have 19 probabilities of the movement after every
ingle collision. Moreover, 2-D simulation has one lattice of depth,
ut in 3-D simulation the multiplication computation resources is
eeded to provide as much as the lattice depth factors. However,
n the near future, LBM 3D simulation should be encouraged in
rder to improve the complex understanding of the RTI.

. Conclusions

The numerical simulations during the mixing process of RTI
ave been carried out by using the Lattice Boltzmann method
LBM). Two important parameters of the viscosity and ratio-
ensity of the involved-fluids were considered. The Reynolds
umber represents the viscosity and the Atwood number rep-
esents the ratio density of both working fluids. The analysis
f interfacial behavior during RTI, the behavior of the average
ensity, and the positions of bubbles/spikes were presented. The

esults are summarized as below:

287
1. Both Reynolds and Atwood numbers affect the RTI process.
The higher the Reynolds and the Atwood numbers, the
faster the mixing process during RTI.

2. The average density plots show that under the change of
the Atwood number is more dispersed than that of the
Reynolds number. It indicates that the Atwood number has
an important role than the Reynolds number.

3. The distance of traveled (positions at the certain time)
of the bubbles and spikes under change of the Atwood
number is always higher than that of the change of the
Reynolds number. This fact means that change of the At-
wood number is more dominant than that of Reynolds
number during mixing process of RTI.
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